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Abstract  

Climate change is a major, constant threat to farmers globally, especially in less developed countries 
like Ethiopia. This study examined how farmers choose adaptation methods, recognizing that their 
ability to adapt is heavily determined by their local social, economic, and environmental conditions, 
including their agro-ecological zone. The study surveyed 525 farm household heads selected using a 
systematic random sampling method in Northwest Ethiopia. Instead of using one general model, the 
study ran a set of seven distinct Binary Logistic Regression Models (for a specific strategy (Yes/No))
to find the factors driving each choice. This prevents the error of grouping separate decisions together. 
The finding reveals that using these strategies is a complex process influenced by both factors those 
help and holdback farmers. Major limiting factors include repeated drought, poor land quality, water 
scarcity, lack of timely weather information, top-down formal extension service, illiteracy, and limited 
financial services. However, agro-ecology and farmer-to-farmer extension are the strongest influencers 
across most strategies. This confirms that effective adaptation must be location-specific. Moreover, 
it relies  on the farmers’ trust in the knowledge more shared by their peers than formal extension 
service. A key finding is that the reasons for adoption are unique to specific location and to each 
crop management strategy. Furthermore, planned adaptation is vital to protect the highly vulnerable 
lowland and midland areas, pointing to a major disconnect in formal, top-down government extension 
services. The study concludes that public efforts must be customized to match the specific problems 
and strategies of each location, mainly by supporting farmer networks for delivering information and 
services.

Keywords: Adaptation Strategies, Agro-ecological Zones, Binary Logistic Regression, 
Climate Change, Crop Management, Determinants, Ethiopia

1.	Background of the Study

Climate change is a profound statistical shift in global climate patterns, a phenomenon 
that has escalated into an existential threat to biodiversity and human systems (IPCC, 
2023). This crisis reached a historic peak in 2024, when global temperatures reached 
approximately 1.55°C above the pre-industrial average, marking the first time the 
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critical 1.5°C threshold was exceeded (IPCC, 2023; WMO, 2024). In Ethiopia, the impact 
is particularly acute because the agricultural sector, which supports over 70% of the 
population, is almost entirely dependent on rain-fed systems (Worede et al., 2020; Simane 
et al., 2023). This reliance makes the country’s food security and economic development 
highly sensitive to fluctuations in rainfall and temperature, necessitating the adoption 
of adaptation strategies to protect rural livelihoods from climate-induced shocks (FAO, 
2021; Tilahun and Simane, 2017).

The theoretical foundation for understanding how farmers navigate these challenges is 
provided by Random Utility Theory, which posits that the decision to adopt a specific 
adaptation strategy is a rational choice based on perceived benefits. According to this 
framework, a farmer will implement a new practice only if the expected utility of that 
choice outweighs the benefits of remaining with traditional methods or alternative options 
(Maddison, 2007). Because this utility is not directly visible, it is modeled as a function 
of the farmer’s unique socio-economic, institutional, and environmental circumstances 
(Simane et al., 2013). These circumstances form the core determinants that dictate 
whether a household can successfully transition from perceiving a climate risk to taking 
concrete action on the ground, specifically regarding crop management strategies like 
adjusting planting dates or adopting improved seed varieties (Worede et al., 2020).

Socio-economic factors serve as the first major set of determinants, reflecting the 
household’s internal capacity and resource base. Education level is a critical driver, as 
it enhances a farmer’s ability to interpret and respond to new technologies (Dawit and 
Boka, 2025), while farming experience provides local knowledge that can either promote 
adaptation or lead to risk aversion (Yesuf et al., 2008). Furthermore, the physical and 
financial resources of the household, such as the size of the labor pool (Girma et al., 
2022), total farm acreage, and access to farm or off-farm income, determine the ability 
to relax financial constraints necessary for investing in new inputs (Shita et al., 2022; 
Tadesse et al., 2025). These internal factors are often mediated by the sex of the household 
head, which historically influences the degree of access to resources and information 
(Alemayehu, 2022).

Beyond the household level, institutional determinants represent the external policy 
and support environments that facilitate adaptation. Access to credit is essential for 
overcoming liquidity barriers to purchasing inputs (Yirga et al., 2022), while extension 
services and farmer-to-farmer networks provide the necessary channels for disseminating 
information and building skills (Shita et al., 2022). The security of land tenure also plays 
a fundamental role, as farmers are far more likely to invest in long-term, land-improving 
strategies like conservation farming if they have guaranteed rights to their land (Tesfaye et 
al., 2011; Yami and van Asten, 2017). Additionally, the availability of timely weather and 
market information empowers farmers to make economically rational decisions based on 
real-time data rather than current climate variability (Bryan et al., 2009; Simane et al., 
2013).
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Environmental and biophysical determinants constitute the final layer of influence, as 
the local landscape dictates the feasibility of specific strategies. A farmer’s subjective 
perception of changing temperature and rainfall patterns is typically the primary initial 
driver for taking adaptive action (Demissie and Asfaw, 2024; Dawit and Boka, 2025). 
Localized conditions, such as the inherent fertility of the soil and the overarching agro-
ecological zone, further define the viability and necessity of specific crop management 
choices (Tadesse et al., 2025). Finally, high weather variability and unpredictable rainfall 
increase production risks, driving farmers toward risk-mitigating strategies like crop 
diversification (Tadesse and Teklay, 2024).

Despite the wealth of existing literature, a significant contextual and methodological gap 
remains in how research translates these broad factors into localized action. Much of the 
previous work has utilized top-down modeling focused on large-scale impact predictions, 
which contrasts with the need for a bottom-up approach that seeks to understand the 
strategy-specific determinants of farmer-led choices (Maddison, 2007; Tilahun and Simane, 
2017). Existing research has not adequately isolated the factors influencing specific crop 
management strategies, particularly regarding the heterogeneous influence of distinct 
agro ecological zones. This study addresses that gap by employing a bottom-up method in 
Northwest Ethiopia to evaluate how local contexts shape adaptation, ultimately providing 
the evidence-based insights needed for targeted policy and extension interventions.

2. Research Methodology
2.1. Study Area Justification and Agro-ecological Zones
This study utilizes a purposive sampling strategy to select three districts within the 
Amhara region, representing the full environmental and economic spectrum of Northwest 
Ethiopia. By spanning the elevation gradient from the Abay-Beshilo River gorges to the 
Semien Mountains, the selection captures the diverse agro-ecological zones (AEZs) that 
fundamentally dictate cropping choices and adaptation strategies (FAO, 2003; Simane et 
al., 2013) (Refer Figure 1).
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Source: Researchers own computation from Ethio GIS Database

Figure 1: Location of the study districts with reference to varied elevation zones 

The Highland Zone (Dega) is represented by the Dabat district, a high-altitude area 
characterized by cold temperatures and high rainfall. Farming here follows the Highland 
Cereals and Livestock (HCL) system, focusing on cold-tolerant crops like barley, wheat, 
and pulses. Due to the steep terrain and climate profile, adaptation strategies in this 
zone prioritize frost mitigation, moisture management, and intensive soil conservation 
(Gashaw et al., 2021).

The Midland Zone (Woyna-Dega) is represented by the Dembia district, situated on 
the productive Lake Tana plain. As a transitional zone with moderate temperatures, it 
supports the Northwest Mixed Cereal (NMC) system, where farmers cultivate diverse crops 
including teff, sorghum, and maize. In this highly productive, yet, weather-sensitive area, 
crop management focuses on navigating rainfall variability and maximizing yields through 
intensive inputs like fertilizers and improved seed varieties (Worede et al., 2020).

The Lowland Zone (Kolla) is represented by the Simada district, specifically the 
communities nestled within the deep gorges of the Blue Nile and Beshilo Rivers. This 
zone is characterized by intense heat and high moisture stress, falling under the Abay/
Sorghum/Pulses (ABSP) farming profile. Agricultural practices here rely on drought-
tolerant crops like pearl millet and sorghum, with adaptation efforts strictly dedicated to 
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moisture conservation, heat stress reduction, and coping with recurrent droughts and 
flash floods (Ayalew et al., 2023).

By integrating physical AEZ classifications with socio-economic livelihood profiles (HCL, 
NMC, ABSP), this site selection provides a robust framework for the study. This dual-
system approach ensures that the research captures how widely varied environmental 
and economic contexts influence the specific decisions of smallholder farmers to adopt 
various crop management strategies across the region.

2.2. Research Approach and Design
This study employs a bottom-up adaptation assessment approach, prioritizing local-level 
details and farmers’ perspectives to ensure a context-specific analysis across the selected 
agro-ecological zones. Given the complex interplay of natural and socioeconomic factors 
inherent in climate change research, a mixed-methods research design was adopted 
within a pragmatic framework (Adger et al., 2020; IPCC, 2023; Creswell, 2014). This 
approach leverages the complementary strengths of both quantitative and qualitative 
methods to provide a more comprehensive understanding of adaptation behavior (Raune, 
2012; Creswell and Clark, 2017).

The quantitative component utilizes a cross-sectional survey design systematically to 
collect numerical data from a large household sample at a single point in time. This 
design is specifically intended to statistically identify the key determinants influencing 
the adoption of crop management strategies, ensuring that the findings are reliable and 
can be generalized to the broader farming population (Creswell, 2014). Conversely, the 
qualitative component provides a deeper exploration of the social and institutional context 
through in-depth interviews, focus group discussions, and direct field observations. These 
methods capture the lived experiences and underlying motivations of farmers, explaining 
the “why” and “how” behind their decision-making processes (Creswell and Clark, 2017).

To integrate these approaches, the study follows a sequential explanatory (QUAN-QUAL) 
procedure. Quantitative data are collected and analyzed first, followed by qualitative data 
collection to interpret and contextualize the statistical results. While the household serves 
as the primary unit of analysis for strategy adoption, environmental factors such as 
elevation, temperature, and rainfall are analyzed at the agroecological zone level to provide 
a robust framework for understanding the influence of the biophysical environment on 
farmer choices.

2.3. Sampling Techniques
Following the selection of the three districts (Dabat, Dembia, Simada), kebele 
administrations (KAs) within each were stratified into the respective AEZs (Highland, 
Midland, Lowland). A total of eleven KAs were randomly selected: three from the Highland 
zone, and four each from the midland and lowland zones. This proportional allocation 
(three KAs from 29 total in the highland vs. four KAs from over 40 in the midland/lowland) 
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was necessary to accurately represent the greater geographical area and population 
distribution found across the different zones.

The minimum required sample household size was determined using the established 
mathematical formula developed by Yemane (1967), employing a 5% margin of error 
(e=0.05):

Where: n = designates the sample size the research uses;

N = designates total number of households in all kebeles; 

e = designates maximum variability or margin of error 5% (0.05);

1= designates the probability of the event occurring.

The calculation yielded a minimum size of 389 households. To compensate for potential 
non-response and incomplete responses (Feige and Marr, 2012), the sample size was 
proportionally increased, resulting in a final working sample of 576 households. These 
households were distributed among the selected districts and KAs using the Probability 
Proportional to Size (PPS) method. This ensured that the sample size from each KA was 
proportional to its total household population, thereby guaranteeing a representative 
sample given the unequal household sizes across the different elevation zones.

where: is proportional sample size of the ith kebele/agroecology; Ni is population size of 

the ithkebele/agroecology.

The final sample distribution was: lowland (263), midland (181), and highland (132). This 
disparity is justified by: (1) selecting more KAs from the midland and lowland zones was 
necessary due to their larger geographic and total population coverage. (2) consistent with 
demographic trends in the Abbay Basin and arid/semi-arid regions (Pison et al., 2012), the 
lowland area, despite being a challenging landscape, exhibits higher population density 
due to intensive settlement clustering around permanent water sources (tributaries of 
Abay and Beshilo Rivers). This pattern is further supported by historical census data.
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Table 1: Distribution of sample population by elevation zone

Sample Kebeles No. of households Sample size

Lowland 4 5033 263

Midland 4 3976 181

Highland         3 2722 132

Grand Total 11732 576

*NH = North Highland                        Source:Woreda Administration Offices 

The sampling frame (household lists) was obtained from respective kebele administration 
offices. Sample households were selected from each KA using a systematic random 
sampling technique. This involved: (1) calculating the sampling interval (K); (2) selecting 
a random start number between one and K; and (3) subsequently selecting every Kth 
household head until the required sample size was reached. This method assumed a 
uniform distribution of rural farmers within each stratum (Feige and Marr, 2012), 
guaranteeing a well-distributed and representative final sample.

2.4. Sources and Methods of Data Collection
This study used an integrated mixed-methods approach (primary and secondary data) 
to ensure a robust understanding of crop management strategies for adapting to climate 
change.

2.4.1. Primary Data Sources
A detailed household survey was administered to the sampled household heads or rarely 
their spouses. The instrument was designed to capture comprehensive information on 
demographics, socio-economic characteristics, institutional access, perceived climate 
risk, and specific crop management strategies. The survey instrument was rigorously 
translated into Amharic language and refined following a pilot test in a non-sampled 
kebele to ensure clarity and validity. Data collection involved trained enumerators, with 
close follow-up and the replacement of persistently absent or unwilling households with 
the next household on the systematic random sampling list (Dillman et al., 2014).

Qualitative data were gathered using in-depth interviews and focus group discussions for 
exploring the underlying reasons, processes, and contextual nuances (“how” and “why”) 
of farmers’ adaptive choices, thereby complementingthe quantitative findings (Creswell 
and Creswell, 2018).

2.4.2. Secondary Data Sources
Secondary data provided the crucial contextual and climatic foundation for the analysis: 
A review of scholarly literature and international policy documents (Yami and van Asten, 
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2017) established the global and theoretical framework, allowing local findings to be 
compared against established research. Population figures and physical characteristics 
were collected from administrative offices, detailing the socio-economic and non-climatic 
context of the study districts.

Long-term daily gridded rainfall and temperature records (1979–2010) were obtained 
for specific study sites from the Global Weather Data for SWAT (http://globalweather.
tamu.edu/). The use of this gridded reanalysis meteorology product was strongly justified 
by the lack of long-term, consistent operational weather station records in the remote 
dissected gorges and highlands. This dataset overcomes issues of missing or inconsistent 
station data, providing a spatially continuous and representative time series essential for 
accurate drought analysis across the distinct AEZs (FAO, 2017).

2.5. Methods of Data Analysis
The collected data underwent a rigorous analytical process specifically tailored to the 
study’s mixed-methods design and research objectives.

2.5.1. Descriptive and Climatic Analysis
To establish baseline findings, the quantitative data were analyzed using descriptive 
statistics (frequency, percentages, means, and indices) to quantify the characteristics 
of drought and the distribution of adaptation strategies before proceeding to further 
inferential analysis (Field, 2018).

To establish necessary climatic foundation, the Standardized Precipitation Index (SPI) 
(McKee et al., 1993) was applied to the 1979–2010 precipitation record to quantify 
historical drought characteristics (duration, magnitude, and intensity) across the three 
distinct AEZs.

2.5.2. Inferential Analysis (Binary Logistic Regression)

To address the primary inferential objective—identifying determinants that influence 
farmers’ adoption of crop management strategies—Binary Logistic Regression (BLRM) 
was employed (Hosmer and Lemeshow, 2000; Greene, 2018). BLRM is the appropriate 
econometric model for analyzing a dichotomous dependent variable (Adoption: Yes/No) 
because it uses a logit link function to constrain the predicted probability of adoption 
to the required 0-to-1 range, a condition standard linear regression cannot meet. This 
makes the model ideal for describing the relationship between adoption and its predictor 
variables (Tarling, 2009).

The model takes the form:

Where: y is the binary response variable (crop management options),
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is the constant or the intercept of y,

 are regression coefficients, 
P is the predicted probability to adopt (coded 1), 

1−P is predicted probability of the decision to adopt a particular adaptation option,                    
	 xi1+xi2+xip are the predictor variables included in the model.

To provide precise, strategy-specific policy recommendations, seven independent Binary 
Logistic Regression Models were estimated to analyze the distinct, non-mutually exclusive 
crop management strategies. This approach successfully isolated the unique socio-
economic, institutional, and environmental factors driving the choice for each specific 
adaptation and avoided the restrictive Independence of Irrelevant Alternatives (IIA) 
assumption associated with complex models like Multinomial Logit (Maddison, 2007). The 
resulting Odds Ratios (Exp(B)) are highly interpretable: a value greater than one indicates 
a positive relationship with adoption, and a value less than one indicates a negative 
relationship (SPSS 16), delivering precise, strategy-specific policy recommendations.

2.5.3. Variable description

The variables used in the model, categorized as dependent and explanatory, are 
defined and measured as follows.
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Table 2: Definition and measurement of variables

Variable Type Variable Name Description and Measurement

Dependent 
Variables 
(Outcome)

Improved Seeds Dummy:1 = Adopted; 0 = Did not adopt.

Diversifying Crops
Dummy:1 =Diversifier (grows≥3 crops); 0 =Not a diversifier 
(grows<3 crops).

Change Planting Dates Dummy: 1 = Adopted; 0 = Did not adopt.

Replanting Crops Dummy: 1 = Adopted; 0 = Did not adopt.

Agroforestry Dummy: 1 = Adopted; 0 = Did not adopt.

Organic Fertilizers Dummy: 1 = Adopted; 0 = Did not adopt.

Irrigation Dummy: 1 = Adopted; 0 = Did not adopt.

Water Harvesting Dummy: 1 = Adopted; 0 = Did not adopt.

Explanatory 
variables 
(predictors)

Age of the household head Continuous: Measured in years.

Sex of the household head Dummy: 1 = Male; 0 = Female.

Family size in the household Continuous: Number of people in the household.

Education of the HH head Dummy:1= Literate; 0 illiterate – no formal education attended

Farmland fertility status Dummy: 1 = Fertile; 0 = Otherwise (Less fertile/Infertile).

Farm size of the households Continuous: Measured in hectares (ha).

Access to water for irrigation Dummy: 1 = Yes (Access); 0 = No (No access).

Livestock ownership Continuous: Measured in Tropical Livestock Units (TLU).

Annual farm income Continuous: Measured in Ethiopian Birr (ETB).

Non-farm income Continuous: Measured in Ethiopian Birr (ETB).

Access to credit Dummy: 1 = Yes (Access); 0 = No (No access).

Access to markets Continuous: time taken to reach the nearest market (in hours).

Number of relatives in a village Continuous: The absolute number of relatives in the village.

Farmer-to-farmer extension Dummy: 1 = Yes (Participates); 0 = No (does not participate).

Access to formal extension Dummy: 1 = Yes (Access); 0 = No (No access).

Access to training Dummy: 1 = Yes (Access); 0 = No (No access).

Access to weather information Dummy: 1 = Yes (Access); 0 = No (No access).

Perceived temperature change
Dummy: 1 = Yes (Perceived change); 0 = No (did not perceive 
change).

Perceived rainfall change
Dummy: 1 = Yes (Perceived change); 0 = No (did not perceive 
change).

Agroecology Categorical: 1 = Highland; 2 = Midland; 3 = Lowland.

Note on Dummy Variables: For all dummy variables, the value 1 stands for ‘Yes’ or the 
presence of the attribute (e.g., Male, Adopted, Access), and 0 stands for ‘No’ or the absence 
of the attribute.
Source: The researcher’s compilation  
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3.5.4. Model Diagnostics, Goodness-of-Fit, and Collinearity

Rigorous diagnostics were performed to confirm the stability of the parameter estimates 
and the adequacy of the model structure and fit.

(a)	 Model Structure and Justification: The study’s structure required estimating 
seven independent Binary Logistic Regression Models (one for each distinct 
adaptation strategy) with all independent variables (listed in the table) included as 
covariates (Maddison, 2006). This approach was statistically necessary to isolate 
the unique determinants for each specific, non-mutually exclusive decision. The 
95% confidence interval (CI) for the Odds Ratio was computed for interpretation.

(b)	 Goodness-of-Fit Assessment: Model adequacy was confirmed using the Hosmer-
Lemeshow Goodness-of-Fit Test (Hosmer and Lemeshow, 2000), where an 
insignificant p > 0.05 confirmed the models adequately fit the observed data. This 
was supported by the Classification Table Analysis, which showed the full models 
significantly improved predictive accuracy over the null model (67.9% to 93.7% 
correct classification) compared to the constant-only model (58% to 92.6% correct 
classification).

(c)	 Collinearity Diagnostics: Collinearity was assessed using the Variance Inflation 
Factor (VIF). VIF is the preferred multivariate test as it accounts for the complex 
linear inter-correlation between a predictor and all other predictors. A parallel 
linear regression was run with the same independent variables to generate VIF 
values (Hosmer and Lemeshow, 2000). The results confirmed no multicollinearity 
problem in any of the seven models, as all VIF values consistently fell well below 
the common threshold of 10(ranging from 1.062 to 2.278), ensuring the stability of 
the coefficients.

Qualitative Analysis: Qualitative data from in-depth interviews (IDIs), focus group 
discussions (FGDs) and secondary information were subjected to thematic analysis (Braun 
and Clarke, 2006), involving systematic coding and interpretation to uncover recurring 
themes, patterns, and contextual factors.

3. Results and Discussion
3.1. Climate Characterization 
Developing effective mitigation and adaptation strategies requires a comprehensive 
understanding of drought frequency, duration, magnitude, and severity. To assess 
these long-term patterns across the three agro-ecological zones from 1979 to 2010, the 
Standardized Precipitation Index (SPI) was utilized. The resulting data revealed distinct 
characteristics for each zone, demonstrating that prolonged duration does not inherently 
correlate with higher intensity (refer Table 3).
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Table 3: Summary of drought duration, magnitude, and intensity by agro-ecological zone

Agro-ecology Duration in year Magnitude (−) Intensity (−) Span of time

Highland 18 12.16 0.68 1979−2010
Midland 12 12.54 1.05 1979−2010
Lowland 15 15.53 1.04 1979−2010

Source: Computed from Global Weather Data for SWAT[http://globalweather.tamu.
edu/]
In the highland agro-ecological zone, drought persisted for the longest duration at 18 
years, yet it recorded the lowest intensity at 0.68. In contrast, the midland and lowland 
zones faced more severe conditions over shorter periods; the midland zone reached the 
highest intensity of 1.05 over 12 years, while the lowland zone experienced the greatest 
magnitude of 15.53 over 15 years. These findings align with research by Gidey et al. 
(2024) and Daba et al. (2023), which asserts that the cumulative impact and magnitude 
of a drought can be more significant even when the event is shorter in duration.

This complex relationship between duration and severity is, further, supported by 
Otgonjargal (2012), who observed that shorter drought events often possess higher 
magnitudes than longer ones. For instance, the midland and lowland zones in this study 
exhibited significantly higher intensities despite their shorter time spans compared to the 
highland zone. Identifying these varied patterns is essential for tailoring climate-resilient 
strategies to the specific vulnerabilities and environmental stressors unique to each agro-
ecological zone (Tilahun et al., 2022; Worku et al., 2021).

3.2. Descriptive Variation in Crop Management Strategy Usage by 
Agro-ecological Zone
The descriptive analysis of household data reveals a pronounced heterogeneity in strategy 
adoption across the three agro-ecological zones, with an overall average usage rate of 
45.27% across all categories. A clear trend in adaptive effort emerges along an elevational 
and socioeconomic gradient; the highland zone exhibits the highest average usage at 
51.22%, followed by the midland at 44.56%, while the lowland zone shows the lowest 
engagement at 40.02% (refer Table 4). Qualitative insights from focus group discussions 
and interviews suggest that this pattern is driven by a highland advantage characterized 
by superior access to financial services, infrastructure, and extension support, contrasting 
with the lowland barrier of remoteness and acute poverty (Worku et al., 2021).
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Table 4: Percentage of households using crop management strategies by 

agroecology

Crop management options Total(Average)  Highland     Midland Lowland

Organic fertilizers 91.93 96.9 84.2 94.7

Improved seeds 53.67 77.5 75.9 7.6

Diversifying crops 68.13 69.8 68.4 66.2

Changing planting dates 74.13 94.6 67.7 60.1

Replanting crops 73.27 91.5 60.2 68.1

Irrigation 19.97 24.8 24.8 10.3

Water harvesting 7.6 3.9 3.0 16.0

Agroforestry 64.4 86.8 44.4 62.0

Average 45.27 51.22 44.56 40.02

Source: Household survey, March – Sept 2019, SPSS16 output using multiple 
response command

The adoption data further highlights a significant disparity between low-cost, accessible 
practices and capital-intensive technologies. Practices requiring minimal financial outlay, 
such as the use of organic fertilizers, are nearly universal, with an average adoption rate 
of 91.93% across all zones. This heavy reliance on manure represents a rational, risk-
averse response to the high costs and logistical hurdles of chemical inputs (Gebremedhin 
and Placide, 2023). Similarly, crop diversification remains a consistent, low-cost risk 
management tool with uniform adoption across the region. However, more flexible 
adjustments like changing planting dates and replanting are significantly more prevalent 
in the highlands, reaching over 90% adoption, which suggests that farmers in this zone 
possess the necessary resources and information to make timely, responsive decisions.

In contrast, specialized and capital-intensive strategies expose severe institutional and 
resource constraints, particularly in the lowlands. For instance, the adoption of improved 
seeds is nearly 77% in the highland and midland zones but plummets to a mere 7.6% 
in the lowland zone, highlighting a dramatic failure of input markets and credit systems 
in remote areas (Worede et al., 2020). A similar trend is observed in water management; 
despite the extreme moisture stress of the lowlands, irrigation adoption there is only 
10.3%, less than half the rate of the other zones, confirming that infrastructure and 
capital constraints often outweigh environmental necessity (Bryan et al., 2011).

Agroforestry presents a unique case where adoption is driven by a combination of ecological 
mandate and targeted intervention. While usage drops in the midlands, it remains high in 
the lowlands at 62%, largely due to the necessity of mitigating soil erosion and heat stress 
in degraded gorge ecosystems. Findings indicate that this sustained adoption is facilitated 
by non-governmental organizations that bundle soil and water conservation programs 
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with direct economic incentives like food-for-work or cash-for-work. These programs 
encourage the establishment of contour bunds, living fences, and fodder woodlots, 
effectively offsetting the initial costs of tree-based systems. Ultimately, while the highlands 
benefit from systemic institutional support, the lowlands rely on specialized, incentive-
based programming to overcome the barriers inherent in their fragile and resource-poor 
environment.

3.3. Determinants of Farmers’ Choice of Crop Management 
Strategies
The adoption of crop management measures is not uniform; its drivers vary based on 
the specific nature of each strategy. Consequently, this study utilizes seven independent 
Binary Logistic Regression Models (BLRM) rather than a single generalized model. This 
segmented approach, detailed in Table 5, prevents the masking of unique determinants 
and identifies the precise socio-economic, institutional, and environmental factors 
influencing choices such as improved seed use, organic fertilization, adjusted planting 
dates, replanting, crop diversification, agroforestry, and water management.
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Table 5: Determinants of farmers’ decision of crop management strategies to climate change

Independent 

variables

Improved seeds      diversify crops Change planting dates Replanting crops

Sig. Exp(B) Sig. Exp(B) Sig. Exp(B) Sig. Exp(B)

Highland(1)
.000 .001* .000* .000*

Midland (2)
.130 .543 .024* .453 .000* .071 .000* .109

Lowland (3)
.000 .023 .125 1.598 .000* .085 .046* .454

Age of the HH
.004 .964 .029* .980 .133 .985 .041* .980

Gender_HH(1)
.735 1.140 .245 1.385 .004* 2.264 .034* 1.850

Family size
.076 1.520 .966 1.007 .217 1.240 .761 .950

Education
.769 .979 .405 1.047 .005* .853 .765 .982

weather info(1)
.046 1.826 .040* 1.570 .001* .438 .463 1.191

Farm size
.005 1.895 .002* 1.905 .015* 1.655 .320 1.183

Land fertility(1)
.824 1.095 .289 1.324 .732 1.097 .038* 1.791

TLU
.684 .966 .277 .936 .009* .842 .022* .868

Draught animal 
.955 1.012 .724 1.059 .017* 1.557 .188 1.249

Farm income
.022 1.000 .000* 1.000 .066 1.000 .000* 1.000

Non-farm inco
.349 1.000 .481 1.000 .183 1.000 .833 1.000

Far-far exten(1)
.008 2.464 .034* 1.675 .905 1.031 .001* 2.309

Exten_serv(1)
.842 1.062 .015* .562 .313 .774 .557 .865

Percept_ RF
** ** ** ** .36.2 .1.480 .467 1.339

Constant
.920 1.084 .539 .695 .000* 13.393 .156 2.561

Source: Households survey       *significant at 0.05    ** not fitted to the model (1) stands 
for ‘Yes’
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Table 5: Determinants of farmers’ adoption of crop management strategies (continued…)

Predictor variables Organic fertilizers I r r i g a t i o n - w a t e r 
harvesting

Agro-forestry 

Sig. Exp(B) Sig. Exp(B) Sig. Exp(B)

Agroecology- highland(1) .000* .01* .000*
Agroecology -midland(2) .000* .032 .386 .651 .000* .06
Agroecology -lowland(3) .442 .550 .04* 2.24 .003* .35
Age _HH head .903 1.002 .603 1.01 .922 1.00
Family size .000* 4.343 .785 .98 .035* 1.31
Educational attainment .949 1.008 .498 1.05 .116 1.11
Access to weather info(1) .023* 2.887 .428 1.28 .777 1.07
Farm size .419 1.362 .808 1.05 .033* 1.36
Access to water(1) .767 1.246 .00* 48.6 .049* 2.53
Tropical livestock unit (TLU)

.000* 1.780 .641 1.03 .24 1.06

Farm income .864 1.000 .552 1.00 .006* 1.00
Nonfarm income .889 1.000 .621 1.00 .978 1.00
Farmer-to-farmer extension(1)

.080 2.271 .929 .971 .019* 1.76

Extension service(1) .926 1.047 .00* 2.37 .000* 2.30
Perception to temperature(1)

.534 1.595 .804 .886 .337 .70

Perception to rainfall(1) .988 1.011 .009* 2.296 .065 2.13
Constant .214 .153 .056 .173 .452 .57

Source: Households survey, 2019; Note: The reference category is not adopt

Table 5 presents the logistic regression results, confirming that adaptation decisions are 
highly strategy-specific. The number of significant determinants varies across the seven 
models, ranging from four for organic fertilizers to seven for practices like agroforestry and 
changing planting dates. This variation proves that drivers are not uniform; for example, 
while family size significantly boosts the adoption of organic fertilizers and agroforestry 
due to labor needs, it remains irrelevant for improved seeds or shifting planting dates. 
These findings validate the use of separate binary models to capture precisely the unique 
decision-making processes behind each non-mutually exclusive adaptation choice.
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3.3.1. Factors Influencing the Adoption of Improved Seeds
The model for improved seeds successfully identified six statistically significant 
determinants (p<0.05): agro-ecology, age of the household head, access to climate 
information, farm size, farm income, and farmer-to-farmer extension (Table 5).

The positive relationship between farm size (Exp(B)=1.895) and farm income (Exp(B)=1.000 
- significant at p=0.022) and the adoption of improved seeds is well-documented. Larger 
farms and higher incomes provide the necessary capital and capacity to absorb the 
financial risks associated with purchasing new seed varieties and complementary inputs 
like fertilizers (Feige and Marr, 2012; Yesuf et al., 2008). Similarly, access to farmer-
to-farmer extension Exp(B)=2.464) is a powerful positive driver, facilitating peer-to-peer 
learning which builds trust and is often more effective than formal approaches (Yohannes 
etal., 2020).

The study found that households in midland (Exp(B)=0.543) and lowland (Exp(B)=0.023) 
agroecological zones are less likely to adopt improved seeds compared to those in highland 
zones. This result strongly supports the idea that biophysical conditions significantly 
influence technology viability (Yesuf et al., 2008; Ayele et al., 2024), as distinct rainfall, 
temperature, and soil characteristics make certain improved seed varieties less suitable 
or profitable in lower altitudes.

Age of the household head shows a statistically significant negative relationship 
(Exp(B)=0.964), indicating that younger farmers are more likely to implement these 
strategies compared to their older counterparts. This is attributed to younger farmers’ 
greater exposure to modern farming techniques, longer planning horizons, and higher 
willingness to accept risk (Yohannes et al., 2020; Ayele et al., 2024).

Although the study found that a farmer’s perception of climate change was not a 
statistically strong predictor of improved seed use in this specific model, access to weather 
information (Exp(B)=1.826) was found to be a significant positive determinant. This aligns 
with research that emphasizes the importance of climate information services in driving 
the adoption of climate-smart agricultural practices (Gbetibouo, 2009; Yohannes et al., 

2020).

3.3.2. Factors Influencing the Use of Organic Fertilizers (manure-compost)
Agroecology shows a significant difference in adoption likelihood. Households in the 
midland (Exp(B)=0.032) and lowland (Exp(B)=0.550) agro-ecological zones were less likely 
to adopt organic fertilizers compared to the highland zones. This divergence is justified by 
the key informants and FGD participants mostly attributed to the use of animal dung as 
a primary source of fuel in lower altitudes, diverting this resource from agricultural use.

 This challenges the assumption that all degraded areas would see high fertilizer use. In 
contrast to the strategy-specific insignificance for improved seeds, family size is a crucial 
determinant, showing that an increase of one person in the family increases the odds 
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of adopting organic fertilizers by a substantial factor of 4.343 (p<0.001). This highlights 
the labor-intensive nature of composting and manure application, which requires a large 
available labor force.

Households with access to weather information were 2.887 times more likely to adopt 
this crop management practice, as they understand that organic fertilizers can help crops 
withstand expected drought conditions. Similarly, livestock ownership (TLU) is a strong 
positive determinant, increasing the odds of adoption by a factor of 1.780, reflecting the 
fact that livestock is the primary source of manure for soil fertility management.

3.3.3. Factors Influencing the Crop Diversification
The model for crop diversification identified seven statistically significant factors (p<0.05): 
agroecology, age of the household head, access to weather information, farm size, farm 
income, farmer-to-farmer extension, and formal extension services (Table 5).

The model’s results indicate a strong geographical influence, with households in the 
lowland agroecology found to be 1.598 times more likely to diversify than those of in 
the highland, while midland households were 0.453 times less likely. This aligns with 
the argument that farmers in vulnerable, dry land areas are more likely to adopt risk-
mitigating strategies (Yohannes et al., 2020) due to heightened exposure to climatic 
shocks.

The positive relationship between farm size (Exp(B)=1.905) and crop diversification is well-
established, as larger farms provide more land and capital opportunities for diversification 
(Yohannes et al., 2020). Access to weather information (Exp(B)=1.570) and farmer-to-
farmer extension (Exp(B)=1.675) are consistently identified as key positive drivers.

In contrast, government extension services showed a statistically significant negative 
relationship (Exp(B)=0.562). This is a critical finding, suggesting that the formal extension 
approach in the study area may be counterproductive for promoting diversification, 
reinforcing the preference for trusted peer networks. The negative correlation with age 
(Exp(B)=0.980) is consistent with literature, showing younger farmers are more willing to 

experiment with new crops.

3.3.4. Factors Influencing Changing Planting Dates
The model for changing planting dates identified seven statistically significant determinants 
(p<0.05): elevation, gender, education, access to weather information, farm size, livestock 

ownership (TLU), and livestock ownership (Table 5). This unique set of variables further 
confirms that the decision process for this timing-based strategy is distinct from input-
based or diversification practices.

The findings show that lowland (Exp(B)=0.071) and midland (Exp(B)=0.085) households 
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were found to be significantly less likely to change planting dates than highland households. 
This negative relationship with lower elevation is supported by studies showing that the 
effective window for planting is often narrower in drier lowland areas, making the act of 
changing the date a riskier practice (Kassie et al., 2009).

The influence of farm size (Exp(B)=1.655) and livestock ownership(Exp(B)=1.557) is logical 
and widely accepted. These assets provide the necessary means to prepare land and plant 
crops quickly, allowing farmers to take advantage of short, unpredictable rainfall events. 
Furthermore, male-headed households were 2.264 times more likely to change planting 
dates than female-headed households, consistent with the literature noting that male 
farmers are often more involved in climate-sensitive field operations and have better 
access to information and heavy-duty resources.

Crucially, access to weather information showed a significant negative relationship 
(Exp(B)=0.438) with changing planting dates, which contradicts conventional expectations. 
This critical discrepancy suggests a fundamental failure in the delivery or trustworthiness 
of climate information in the specific study area. Farmers may receive information that is 
too generic, delayed, or inconsistent, leading them to disregard it and adhere to traditional 
signs, thereby reducing the likelihood of a planned change in planting. The negative 
relationship with education (Exp(B)=0.853) and livestock ownership (TLU) (Exp(B)=0.842) 
also points to older, perhaps more traditional, educated farmers being less reactive to 
climate signals and market fluctuations regarding planting windows.

3.3.5. Factors Influencing Replanting Crops
The model for replanting identified seven statistically significant factors (p<0.05): 
agroecology, age, gender, land fertility, livestock ownership (TLU), farm income, and 
farmer-to-farmer extension (Table 5).

Again, lower agroecology significantly inhibits adoption: midland (Exp(B)=0.109) and 
lowland (Exp(B)=0.454) households were significantly less likely to replant compared to 
the highlands. Replanting in moisture-stressed lowlands is a high-risk activity with low 
probability of success, directly discouraging its use (Tilahun and Simane, 2017).

Age shows a negative influence (Exp(B)=0.980), consistent with the risk-aversion of older 
farmers. Conversely, male-headed households were 1.85 times more likely to replant, 
reflecting greater access to labor and resources needed for this demanding activity.

The inverse relationship between livestock ownership (TLU) (Exp(B)=0.868) and replanting 
is a specific adaptive strategy unique to this high-risk decision. Farmers often view their 
livestock as a liquid form of climate-shock insurance. Instead of investing additional 
resources in a risky second planting, they may opt to sell animals to cope with the financial 
loss (Temesgen et al., 2009), shifting toward a livestock-based coping mechanism rather 
than crop recovery. In contrast, land fertility (Exp(B)=1.791) provides a strong incentive 
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for replanting, as the probability of a successful second harvest is higher on healthier 

land.

3.3.6. Factors Influencing Irrigation and Water Harvesting
The model for Irrigation/Water Harvesting identified six statistically significant 
determinants (p<0.05): agroecology, access to water, formal extension services, perception 
of rainfall changes, perception of temperature changes, and access to water for irrigation 
(Table 5).

Access to water was found to be the single most significant determinant across all 
adaptation strategies in the study, increasing the probability of adopting irrigation by 
a massive factor of 48.649 (p<0.001). This self-explanatory necessity underscores the 
fundamental biophysical constraint.

Lowland households were 2.24 times more likely to adopt this strategy than highlands, 
justified by the necessity of water harvesting in areas characterized by frequent droughts 
and severe water shortages (Temesgen et al., 2009). The positive influence of formal 
government extension services (Exp(B)=2.37) on this strategy is a key counterpoint to 
the negative relationship observed in diversification, suggesting that complex, capital-
intensive practices like irrigation require the structured technical support and training 
that formal services can provide (Yohannes et al., 2021).  

Furthermore, a farmer’s perception of climate change (rainfall) was found to be highly 
significant (Exp(B)=2.296). This highlights that when the threat of water scarcity is 
observed and internalized, it serves as a powerful psychological motivator to invest in 
expensive and labor-intensive water management technologies. The absence of other 
socio-economic factors like family size or farm income as significant drivers confirms that 
water availability and knowledge transfer are the primary bottlenecks for this specific 
practice.

3.3.7. Factors Influencing Agroforestry 
The model on the adoption of agroforestry identified seven statistically significant 
determinants (p<0.05): agroecology, family size, farm size, access to water, farm income, 
farmer-to-farmer extension, and formal extension services (Table 5).

As with many other strategies, agroecology is critical: midland (Exp(B)=0.06) and 
lowland (Exp(B)=0.35) agro-ecological zones were less likely to practice agroforestry 
than the highlands. This confirms the critical requirement for reliable rainfall and cooler 
temperatures necessary for tree survival and long-term establishment (Tamene and 
Adimassu, 2019).

The positive influence of family size (Exp(B)=1.31) and farm size (Exp(B)=1.36) is consistent 
with the labor and land demands of this practice. Larger families provide the necessary 
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labor force, and larger farms provide the space for the long-term allocation of land to 
tree crops (Temesgen et al., 2009). Both farm income (Exp(B)=1.00) and access to water 
(Exp(B)=2.53) also positively influence adoption, reflecting the upfront cost and necessary 
moisture for seedling establishment.

Finally, both farmer-to-farmer extension (Exp(B)=1.76) and formal expert services 
(Exp(B)=2.30) were significant positive determinants. This shows that agroforestry, being 
both technically complex and reliant on peer experience, benefits from a hybrid extension 
model, where both official training and trusted peer-to-peer demonstration are essential 

for successful uptake.

4. Conclusions and Policy Implications
This study concludes that climate change adaptation is a complex, heterogeneous 
process driven by a strategy-specific mix of biophysical, socio-economic, and institutional 
determinants. The analysis confirms that anticipatory adaptation is essential for reducing 
vulnerability, particularly in the environmentally fragile lowland and midland zones. 
Because determinants vary by strategy, such as credit driving seed adoption while 
weather information influences planting dates, the use of independent binary models is 
fully justified.

Despite this variability, agroecology and farmer-to-farmer extension emerged as the most 
consistent drivers of adaptation. These findings suggest that a one-size-fits-all approach 
is ineffective; instead, interventions must be tailored to local biophysical constraints 
and leverage peer-to-peer learning networks. Furthermore, the mixed impact of formal 
government services highlights a need to move away from rigid, top-down systems toward 
more participatory, bottom-up models.

To enhance regional resilience, policy must shift toward targeted interventions that 
formally support indigenous knowledge-sharing, reform extension services, and address 
structural barriers. Key priorities include improving localized weather forecasting, 
expanding credit access, and promoting sustainable land management to unlock the full 
adaptive potential of farming households across diverse landscapes.
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