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Abstract

Climate change is a major, constant threat to farmers globally, especially in less developed countries
like Ethiopia. This study examined how farmers choose adaptation methods, recognizing that their
ability to adapt is heavily determined by their local social, economic, and environmental conditions,
including their agro-ecological zone. The study surveyed 525 farm household heads selected using a
systematic random sampling method in Northwest Ethiopia. Instead of using one general model, the
study ran a set of seven distinct Binary Logistic Regression Models (for a specific strategy (Yes/No))
to find the factors driving each choice. This prevents the error of grouping separate decisions together.
The finding reveals that using these strategies is a complex process influenced by both factors those
help and holdback farmers. Major limiting factors include repeated drought, poor land quality, water
scarcity, lack of timely weather information, top-down formal extension service, illiteracy, and limited
financial services. However, agro-ecology and farmer-to-farmer extension are the strongest influencers
across most strategies. This confirms that effective adaptation must be location-specific. Moreover,
it relies on the farmers’ trust in the knowledge more shared by their peers than formal extension
service. A key finding is that the reasons for adoption are unique to specific location and to each
crop management strategy. Furthermore, planned adaptation is vital to protect the highly vulnerable
lowland and midland areas, pointing to a major disconnect in formal, top-down government extension
services. The study concludes that public efforts must be customized to match the specific problems
and strategies of each location, mainly by supporting farmer networks for delivering information and
services.

Keywords: Adaptation Strategies, Agro-ecological Zones, Binary Logistic Regression,
Climate Change, Crop Management, Determinants, Ethiopia

1. Background of the Study

Climate change is a profound statistical shift in global climate patterns, a phenomenon
that has escalated into an existential threat to biodiversity and human systems (IPCC,
2023). This crisis reached a historic peak in 2024, when global temperatures reached
approximately 1.55°C above the pre-industrial average, marking the first time the
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critical 1.5°C threshold was exceeded (IPCC, 2023; WMO, 2024). In Ethiopia, the impact
is particularly acute because the agricultural sector, which supports over 70% of the
population, is almost entirely dependent on rain-fed systems (Worede et al., 2020; Simane
et al., 2023). This reliance makes the country’s food security and economic development
highly sensitive to fluctuations in rainfall and temperature, necessitating the adoption
of adaptation strategies to protect rural livelihoods from climate-induced shocks (FAO,
2021; Tilahun and Simane, 2017).

The theoretical foundation for understanding how farmers navigate these challenges is
provided by Random Utility Theory, which posits that the decision to adopt a specific
adaptation strategy is a rational choice based on perceived benefits. According to this
framework, a farmer will implement a new practice only if the expected utility of that
choice outweighs the benefits of remaining with traditional methods or alternative options
(Maddison, 2007). Because this utility is not directly visible, it is modeled as a function
of the farmer’s unique socio-economic, institutional, and environmental circumstances
(Simane et al., 2013). These circumstances form the core determinants that dictate
whether a household can successfully transition from perceiving a climate risk to taking
concrete action on the ground, specifically regarding crop management strategies like
adjusting planting dates or adopting improved seed varieties (Worede et al., 2020).

Socio-economic factors serve as the first major set of determinants, reflecting the
household’s internal capacity and resource base. Education level is a critical driver, as
it enhances a farmer’s ability to interpret and respond to new technologies (Dawit and
Boka, 2025), while farming experience provides local knowledge that can either promote
adaptation or lead to risk aversion (Yesuf et al., 2008). Furthermore, the physical and
financial resources of the household, such as the size of the labor pool (Girma et al.,
2022), total farm acreage, and access to farm or off-farm income, determine the ability
to relax financial constraints necessary for investing in new inputs (Shita et al., 2022;
Tadesse et al., 2025). These internal factors are often mediated by the sex of the household
head, which historically influences the degree of access to resources and information
(Alemayehu, 2022).

Beyond the household level, institutional determinants represent the external policy
and support environments that facilitate adaptation. Access to credit is essential for
overcoming liquidity barriers to purchasing inputs (Yirga et al., 2022), while extension
services and farmer-to-farmer networks provide the necessary channels for disseminating
information and building skills (Shita et al., 2022). The security of land tenure also plays
a fundamental role, as farmers are far more likely to invest in long-term, land-improving
strategies like conservation farming if they have guaranteed rights to their land (Tesfaye et
al., 2011; Yami and van Asten, 2017). Additionally, the availability of timely weather and
market information empowers farmers to make economically rational decisions based on
real-time data rather than current climate variability (Bryan et al., 2009; Simane et al.,
2013).
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Environmental and biophysical determinants constitute the final layer of influence, as
the local landscape dictates the feasibility of specific strategies. A farmer’s subjective
perception of changing temperature and rainfall patterns is typically the primary initial
driver for taking adaptive action (Demissie and Asfaw, 2024; Dawit and Boka, 2025).
Localized conditions, such as the inherent fertility of the soil and the overarching agro-
ecological zone, further define the viability and necessity of specific crop management
choices (Tadesse et al., 2025). Finally, high weather variability and unpredictable rainfall
increase production risks, driving farmers toward risk-mitigating strategies like crop
diversification (Tadesse and Teklay, 2024).

Despite the wealth of existing literature, a significant contextual and methodological gap
remains in how research translates these broad factors into localized action. Much of the
previous work has utilized top-down modeling focused on large-scale impact predictions,
which contrasts with the need for a bottom-up approach that seeks to understand the
strategy-specific determinants of farmer-led choices (Maddison, 2007; Tilahun and Simane,
2017). Existing research has not adequately isolated the factors influencing specific crop
management strategies, particularly regarding the heterogeneous influence of distinct
agro ecological zones. This study addresses that gap by employing a bottom-up method in
Northwest Ethiopia to evaluate how local contexts shape adaptation, ultimately providing

the evidence-based insights needed for targeted policy and extension interventions.

2. Research Methodology
2.1. Study Area Justification and Agro-ecological Zones

This study utilizes a purposive sampling strategy to select three districts within the
Amhara region, representing the full environmental and economic spectrum of Northwest
Ethiopia. By spanning the elevation gradient from the Abay-Beshilo River gorges to the
Semien Mountains, the selection captures the diverse agro-ecological zones (AEZs) that
fundamentally dictate cropping choices and adaptation strategies (FAO, 2003; Simane et
al., 2013) (Refer Figure 1).
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Figure 1: Location of the study districts with reference to varied elevation zones

The Highland Zone (Dega) is represented by the Dabat district, a high-altitude area
characterized by cold temperatures and high rainfall. Farming here follows the Highland
Cereals and Livestock (HCL) system, focusing on cold-tolerant crops like barley, wheat,
and pulses. Due to the steep terrain and climate profile, adaptation strategies in this
zone prioritize frost mitigation, moisture management, and intensive soil conservation
(Gashaw et al., 2021).

The Midland Zone (Woyna-Dega) is represented by the Dembia district, situated on
the productive Lake Tana plain. As a transitional zone with moderate temperatures, it
supports the Northwest Mixed Cereal (NMC) system, where farmers cultivate diverse crops
including teff, sorghum, and maize. In this highly productive, yet, weather-sensitive area,
crop management focuses on navigating rainfall variability and maximizing yields through
intensive inputs like fertilizers and improved seed varieties (Worede et al., 2020).

The Lowland Zone (Kolla) is represented by the Simada district, specifically the
communities nestled within the deep gorges of the Blue Nile and Beshilo Rivers. This
zone is characterized by intense heat and high moisture stress, falling under the Abay/
Sorghum/Pulses (ABSP) farming profile. Agricultural practices here rely on drought-
tolerant crops like pearl millet and sorghum, with adaptation efforts strictly dedicated to
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moisture conservation, heat stress reduction, and coping with recurrent droughts and
flash floods (Ayalew et al., 2023).

By integrating physical AEZ classifications with socio-economic livelihood profiles (HCL,
NMC, ABSP), this site selection provides a robust framework for the study. This dual-
system approach ensures that the research captures how widely varied environmental
and economic contexts influence the specific decisions of smallholder farmers to adopt
various crop management strategies across the region.

2.2. Research Approach and Design

This study employs a bottom-up adaptation assessment approach, prioritizing local-level
details and farmers’ perspectives to ensure a context-specific analysis across the selected
agro-ecological zones. Given the complex interplay of natural and socioeconomic factors
inherent in climate change research, a mixed-methods research design was adopted
within a pragmatic framework (Adger et al., 2020; IPCC, 2023; Creswell, 2014). This
approach leverages the complementary strengths of both quantitative and qualitative
methods to provide a more comprehensive understanding of adaptation behavior (Raune,
2012; Creswell and Clark, 2017).

The quantitative component utilizes a cross-sectional survey design systematically to
collect numerical data from a large household sample at a single point in time. This
design is specifically intended to statistically identify the key determinants influencing
the adoption of crop management strategies, ensuring that the findings are reliable and
can be generalized to the broader farming population (Creswell, 2014). Conversely, the
qualitative component provides a deeper exploration of the social and institutional context
through in-depth interviews, focus group discussions, and direct field observations. These
methods capture the lived experiences and underlying motivations of farmers, explaining
the “why” and “how” behind their decision-making processes (Creswell and Clark, 2017).

To integrate these approaches, the study follows a sequential explanatory (QUAN-QUAL)
procedure. Quantitative data are collected and analyzed first, followed by qualitative data
collection to interpret and contextualize the statistical results. While the household serves
as the primary unit of analysis for strategy adoption, environmental factors such as
elevation, temperature, and rainfall are analyzed at the agroecological zone level to provide
a robust framework for understanding the influence of the biophysical environment on
farmer choices.

2.3. Sampling Techniques

Following the selection of the three districts (Dabat, Dembia, Simada), kebele
administrations (KAs) within each were stratified into the respective AEZs (Highland,
Midland, Lowland). A total of eleven KAs were randomly selected: three from the Highland
zone, and four each from the midland and lowland zones. This proportional allocation
(three KAs from 29 total in the highland vs. four KAs from over 40 in the midland/lowland)
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was necessary to accurately represent the greater geographical area and population
distribution found across the different zones.

The minimum required sample household size was determined using the established
mathematical formula developed by Yemane (1967), employing a 5% margin of error
(e=0.05):

N
T T EN(e)?

Where: n = designates the sample size the research uses;

(1)

N = designates total number of households in all kebeles;
e = designates maximum variability or margin of error 5% (0.05);

1= designates the probability of the event occurring.

The calculation yielded a minimum size of 389 households. To compensate for potential
non-response and incomplete responses (Feige and Marr, 2012), the sample size was
proportionally increased, resulting in a final working sample of 576 households. These
households were distributed among the selected districts and KAs using the Probability
Proportional to Size (PPS) method. This ensured that the sample size from each KA was
proportional to its total household population, thereby guaranteeing a representative

sample given the unequal household sizes across the different elevation zones.
n x Ni 2)
2 Ni

ni =

.
where: ‘'is proportional sample size of the i kebele/agroecology; Ni is population size of

the i"kebele/agroecology.

The final sample distribution was: lowland (263), midland (181), and highland (132). This
disparity is justified by: (1) selecting more KAs from the midland and lowland zones was
necessary due to their larger geographic and total population coverage. (2) consistent with
demographic trends in the Abbay Basin and arid/semi-arid regions (Pison et al., 2012), the
lowland area, despite being a challenging landscape, exhibits higher population density
due to intensive settlement clustering around permanent water sources (tributaries of
Abay and Beshilo Rivers). This pattern is further supported by historical census data.
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Table 1: Distribution of sample population by elevation zone

Sample Kebeles No. of households Sample size
Lowland 4 5033 263
Midland 4 3976 181
Highland 3 2722 132
Grand Total 11732 576
*NH = North Highland Source:Woreda Administration Offices

The sampling frame (household lists) was obtained from respective kebele administration
offices. Sample households were selected from each KA using a systematic random
sampling technique. This involved: (1) calculating the sampling interval (K); (2) selecting
a random start number between one and K; and (3) subsequently selecting every Kth
household head until the required sample size was reached. This method assumed a
uniform distribution of rural farmers within each stratum (Feige and Marr, 2012),
guaranteeing a well-distributed and representative final sample.

2.4. Sources and Methods of Data Collection

This study used an integrated mixed-methods approach (primary and secondary data)
to ensure a robust understanding of crop management strategies for adapting to climate
change.

2.4.1. Primary Data Sources

A detailed household survey was administered to the sampled household heads or rarely
their spouses. The instrument was designed to capture comprehensive information on
demographics, socio-economic characteristics, institutional access, perceived climate
risk, and specific crop management strategies. The survey instrument was rigorously
translated into Amharic language and refined following a pilot test in a non-sampled
kebele to ensure clarity and validity. Data collection involved trained enumerators, with
close follow-up and the replacement of persistently absent or unwilling households with
the next household on the systematic random sampling list (Dillman et al., 2014).

Qualitative data were gathered using in-depth interviews and focus group discussions for
exploring the underlying reasons, processes, and contextual nuances (“how” and “why”)
of farmers’ adaptive choices, thereby complementingthe quantitative findings (Creswell
and Creswell, 2018).

2.4.2. Secondary Data Sources

Secondary data provided the crucial contextual and climatic foundation for the analysis:

A review of scholarly literature and international policy documents (Yami and van Asten,
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2017) established the global and theoretical framework, allowing local findings to be
compared against established research. Population figures and physical characteristics
were collected from administrative offices, detailing the socio-economic and non-climatic
context of the study districts.

Long-term daily gridded rainfall and temperature records (1979-2010) were obtained
for specific study sites from the Global Weather Data for SWAT (http://globalweather.
tamu.edu/). The use of this gridded reanalysis meteorology product was strongly justified
by the lack of long-term, consistent operational weather station records in the remote
dissected gorges and highlands. This dataset overcomes issues of missing or inconsistent
station data, providing a spatially continuous and representative time series essential for
accurate drought analysis across the distinct AEZs (FAO, 2017).

2.5. Methods of Data Analysis

The collected data underwent a rigorous analytical process specifically tailored to the
study’s mixed-methods design and research objectives.

2.5.1. Descriptive and Climatic Analysis

To establish baseline findings, the quantitative data were analyzed using descriptive
statistics (frequency, percentages, means, and indices) to quantify the characteristics
of drought and the distribution of adaptation strategies before proceeding to further
inferential analysis (Field, 2018).

To establish necessary climatic foundation, the Standardized Precipitation Index (SPI)
(McKee et al., 1993) was applied to the 1979-2010 precipitation record to quantify
historical drought characteristics (duration, magnitude, and intensity) across the three
distinct AEZs.

2.5.2. Inferential Analysis (Binary Logistic Regression)

To address the primary inferential objective—identifying determinants that influence
farmers’ adoption of crop management strategies—Binary Logistic Regression (BLRM)
was employed (Hosmer and Lemeshow, 2000; Greene, 2018). BLRM is the appropriate
econometric model for analyzing a dichotomous dependent variable (Adoption: Yes/No)
because it uses a logit link function to constrain the predicted probability of adoption
to the required O-to-1 range, a condition standard linear regression cannot meet. This
makes the model ideal for describing the relationship between adoption and its predictor
variables (Tarling, 2009).

| P
Logit (y) = In (odds) = In(l P) =8 +Byx; +Box;; . +Byx;,
0

Where: y is the binary response variable (crop management options),
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1is the constant or the intercept of y,

By + Byx;y + Boxg,

=71 are regression coefficients,
P is the predicted probability to adopt (coded 1),

1-Pis predicted probability of the decision to adopt a particular adaptation option,

X, X, tx, are the predictor variables included in the model.

To provide precise, strategy-specific policy recommendations, seven independent Binary
Logistic Regression Models were estimated to analyze the distinct, non-mutually exclusive
crop management strategies. This approach successfully isolated the unique socio-
economic, institutional, and environmental factors driving the choice for each specific
adaptation and avoided the restrictive Independence of Irrelevant Alternatives (IIA)
assumption associated with complex models like Multinomial Logit (Maddison, 2007). The
resulting Odds Ratios (Exp(B)) are highly interpretable: a value greater than one indicates
a positive relationship with adoption, and a value less than one indicates a negative
relationship (SPSS 16), delivering precise, strategy-specific policy recommendations.

2.5.3. Variable description

The variables used in the model, categorized as dependent and explanatory, are
defined and measured as follows.
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Table 2: Definition and measurement of variables

Variable Type Variable Name Description and Measurement
Improved Seeds Dummy:1 = Adopted; 0 = Did not adopt.
Dummy:1 =Diversifier (grows>3 crops); 0 =Not a diversifier
Diversifying Crops (grows<3 crops).
Dependent
Variables Change Planting Dates Dummy: 1 = Adopted; 0 = Did not adopt.
(Outcome) Replanting Crops Dummy: 1 = Adopted; 0 = Did not adopt.
Agroforestry Dummy: 1 = Adopted; 0 = Did not adopt.
Organic Fertilizers Dummy: 1 = Adopted; 0 = Did not adopt.
Irrigation Dummy: 1 = Adopted; 0 = Did not adopt.
Water Harvesting Dummy: 1 = Adopted; 0 = Did not adopt.
Age of the household head Continuous: Measured in years.
Sex of the household head Dummy: 1 = Male; 0 = Female.
Family size in the household Continuous: Number of people in the household.
Education of the HH head Dummy: 1= Literate; 0 illiterate — no formal education attended
Farmland fertility status Dummy: 1 = Fertile; 0 = Otherwise (Less fertile/Infertile).
Farm size of the households Continuous: Measured in hectares (ha).
Access to water for irrigation Dummy: 1 = Yes (Access); 0 = No (No access).
Explanatory
variables Livestock ownership Continuous: Measured in Tropical Livestock Units (TLU).
(predictors) Annual farm income Continuous: Measured in Ethiopian Birr (ETB).

Non-farm income
Access to credit

Access to markets

Number of relatives in a village

Farmer-to-farmer extension
Access to formal extension
Access to training

Access to weather information
Perceived temperature change

Perceived rainfall change

Agroecology

Continuous: Measured in Ethiopian Birr (ETB).

Dummy: 1 = Yes (Access); 0 = No (No access).

Continuous: time taken to reach the nearest market (in hours).
Continuous: The absolute number of relatives in the village.
Dummy: 1 = Yes (Participates); 0 = No (does not participate).
Dummy: 1 = Yes (Access); 0 = No (No access).

Dummy: 1 = Yes (Access); 0 = No (No access).

Dummy: 1 = Yes (Access); 0 = No (No access).
Dummy: 1 = Yes (Perceived change); 0 = No (did not perceive

change).
Dummy: 1 = Yes (Perceived change); 0 = No (did not perceive

change).
Categorical: 1 = Highland; 2 = Midland; 3 = Lowland.

Note on Dummy Variables: For all dummy variables, the value 1 stands for Yes’ or the

presence of the attribute (e.g., Male, Adopted, Access), and O stands for ‘No’ or the absence
of the attribute.

Source: The researcher’s compilation
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3.5.4. Model Diagnostics, Goodness-of-Fit, and Collinearity

Rigorous diagnostics were performed to confirm the stability of the parameter estimates
and the adequacy of the model structure and fit.

(a) Model Structure and Justification: The study’s structure required estimating
seven independent Binary Logistic Regression Models (one for each distinct
adaptation strategy) with all independent variables (listed in the table) included as
covariates (Maddison, 2006). This approach was statistically necessary to isolate
the unique determinants for each specific, non-mutually exclusive decision. The
95% confidence interval (CI) for the Odds Ratio was computed for interpretation.

(b) Goodness-of-Fit Assessment: Model adequacy was confirmed using the Hosmer-
Lemeshow Goodness-of-Fit Test (Hosmer and Lemeshow, 2000), where an
insignificant p > 0.05 confirmed the models adequately fit the observed data. This
was supported by the Classification Table Analysis, which showed the full models
significantly improved predictive accuracy over the null model (67.9% to 93.7%
correct classification) compared to the constant-only model (58% to 92.6% correct
classification).

(c) Collinearity Diagnostics: Collinearity was assessed using the Variance Inflation
Factor (VIF). VIF is the preferred multivariate test as it accounts for the complex
linear inter-correlation between a predictor and all other predictors. A parallel
linear regression was run with the same independent variables to generate VIF
values (Hosmer and Lemeshow, 2000). The results confirmed no multicollinearity
problem in any of the seven models, as all VIF values consistently fell well below
the common threshold of 10(ranging from 1.062 to 2.278), ensuring the stability of
the coefficients.

Qualitative Analysis: Qualitative data from in-depth interviews (IDIs), focus group
discussions (FGDs) and secondary information were subjected to thematic analysis (Braun
and Clarke, 2006), involving systematic coding and interpretation to uncover recurring
themes, patterns, and contextual factors.

3. Results and Discussion
3.1. Climate Characterization

Developing effective mitigation and adaptation strategies requires a comprehensive
understanding of drought frequency, duration, magnitude, and severity. To assess
these long-term patterns across the three agro-ecological zones from 1979 to 2010, the
Standardized Precipitation Index (SPI) was utilized. The resulting data revealed distinct
characteristics for each zone, demonstrating that prolonged duration does not inherently
correlate with higher intensity (refer Table 3).
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Table 3: Summary of drought duration, magnitude, and intensity by agro-ecological zone

Agro-ecology Duration 1n year Magnitude (—) Intensity (—) Span of time

Highland 18 12.16 0.68 1979-2010

Midland 12 12.54 1.05 1979-2010

Lowland 15 15.53 1.04 1979-2010
Source: Computed from Global Weather Data for SWAT[http:/ /globalweather.tamu.
edu/]

In the highland agro-ecological zone, drought persisted for the longest duration at 18
years, yet it recorded the lowest intensity at 0.68. In contrast, the midland and lowland
zones faced more severe conditions over shorter periods; the midland zone reached the
highest intensity of 1.05 over 12 years, while the lowland zone experienced the greatest
magnitude of 15.53 over 15 years. These findings align with research by Gidey et al.
(2024) and Daba et al. (2023), which asserts that the cumulative impact and magnitude
of a drought can be more significant even when the event is shorter in duration.

This complex relationship between duration and severity is, further, supported by
Otgonjargal (2012), who observed that shorter drought events often possess higher
magnitudes than longer ones. For instance, the midland and lowland zones in this study
exhibited significantly higher intensities despite their shorter time spans compared to the
highland zone. Identifying these varied patterns is essential for tailoring climate-resilient
strategies to the specific vulnerabilities and environmental stressors unique to each agro-
ecological zone (Tilahun et al., 2022; Worku et al., 2021).

3.2. Descriptive Variation in Crop Management Strategy Usage by
Agro-ecological Zone

The descriptive analysis of household data reveals a pronounced heterogeneity in strategy
adoption across the three agro-ecological zones, with an overall average usage rate of
45.27% across all categories. A clear trend in adaptive effort emerges along an elevational
and socioeconomic gradient; the highland zone exhibits the highest average usage at
51.22%, followed by the midland at 44.56%, while the lowland zone shows the lowest
engagement at 40.02% (refer Table 4). Qualitative insights from focus group discussions
and interviews suggest that this pattern is driven by a highland advantage characterized
by superior access to financial services, infrastructure, and extension support, contrasting
with the lowland barrier of remoteness and acute poverty (Worku et al., 2021).
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Table 4: Percentage of households using crop management strategies by

agroecology

Crop management options Total(Average) Highland Midland Lowland
Organic fertilizers 91.93 96.9 84.2 94.7
Improved seeds 53.67 77.5 75.9 7.6
Diversifying crops 68.13 69.8 68.4 66.2
Changing planting dates 74.13 94.6 67.7 60.1
Replanting crops 73.27 91.5 60.2 68.1
Irrigation 19.97 24.8 24.8 10.3
Water harvesting 7.6 3.9 3.0 16.0
Agroforestry 64.4 86.8 44 .4 62.0
Average 45.27 51.22 44.56 40.02

Source: Household survey, March — Sept 2019, SPSS16 output using multiple
response command

The adoption data further highlights a significant disparity between low-cost, accessible
practices and capital-intensive technologies. Practices requiring minimal financial outlay,
such as the use of organic fertilizers, are nearly universal, with an average adoption rate
of 91.93% across all zones. This heavy reliance on manure represents a rational, risk-
averse response to the high costs and logistical hurdles of chemical inputs (Gebremedhin
and Placide, 2023). Similarly, crop diversification remains a consistent, low-cost risk
management tool with uniform adoption across the region. However, more flexible
adjustments like changing planting dates and replanting are significantly more prevalent
in the highlands, reaching over 90% adoption, which suggests that farmers in this zone
possess the necessary resources and information to make timely, responsive decisions.

In contrast, specialized and capital-intensive strategies expose severe institutional and
resource constraints, particularly in the lowlands. For instance, the adoption of improved
seeds is nearly 77% in the highland and midland zones but plummets to a mere 7.6%
in the lowland zone, highlighting a dramatic failure of input markets and credit systems
in remote areas (Worede et al., 2020). A similar trend is observed in water management;
despite the extreme moisture stress of the lowlands, irrigation adoption there is only
10.3%, less than half the rate of the other zones, confirming that infrastructure and
capital constraints often outweigh environmental necessity (Bryan et al., 2011).

Agroforestry presents a unique case where adoption is driven by a combination of ecological
mandate and targeted intervention. While usage drops in the midlands, it remains high in
the lowlands at 62%, largely due to the necessity of mitigating soil erosion and heat stress
in degraded gorge ecosystems. Findings indicate that this sustained adoption is facilitated
by non-governmental organizations that bundle soil and water conservation programs
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with direct economic incentives like food-for-work or cash-for-work. These programs
encourage the establishment of contour bunds, living fences, and fodder woodlots,
effectively offsetting the initial costs of tree-based systems. Ultimately, while the highlands
benefit from systemic institutional support, the lowlands rely on specialized, incentive-
based programming to overcome the barriers inherent in their fragile and resource-poor

environment.

3.3. Determinants of Farmers’ Choice of Crop Management
Strategies

The adoption of crop management measures is not uniform; its drivers vary based on
the specific nature of each strategy. Consequently, this study utilizes seven independent
Binary Logistic Regression Models (BLRM) rather than a single generalized model. This
segmented approach, detailed in Table 5, prevents the masking of unique determinants
and identifies the precise socio-economic, institutional, and environmental factors
influencing choices such as improved seed use, organic fertilization, adjusted planting
dates, replanting, crop diversification, agroforestry, and water management.
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Table 5: Determinants of farmers’ decision of crop management strategies to climate change

Independent Improved seeds diversify crops Change planting dates | Replanting crops
variables

Sig. Exp(B) Sig. Exp(B) Sig. Exp(B) Sig. Exp(B)
Highland(I)

.000 .001* .000* .000*
Midland (2)

130 .543 .024* 453 .000* .071 .000* .109
Lowland (3)

.000 .023 125 1.598 .000* .085 .046* 454
Age of the HH

.004 .964 .029* .980 133 985 .041%* .980
Gender HH(1)

735 1.140 245 1.385 .004* 2.264 .034* 1.850
Family size

.076 1.520 966 1.007 217 1.240 761 950
Education

769 979 405 1.047 .005* .853 765 982
weather info(1)

.046 1.826 .040* 1.570 .001* 438 463 1.191
Farm size

.005 1.895 .002* 1.905 .015% 1.655 .320 1.183
Land fertility(1)

.824 1.095 289 1.324 732 1.097 .038* 1.791
TLU

.684 .966 271 936 .009* .842 .022% .868
Draught animal

955 1.012 124 1.059 .017* 1.557 .188 1.249
Farm income

.022 1.000 .000* 1.000 .066 1.000 .000* 1.000
Non-farm inco

349 1.000 A81 1.000 183 1.000 .833 1.000
Far-far exten(1)

.008 2.464 .034* 1.675 .905 1.031 .001%* 2.309
Exten_serv(l)

.842 1.062 .015* .562 313 774 557 .865
Percept RF

*E ok b *E .36.2 .1.480 467 1.339
Constant

920 1.084 .539 .695 .000* 13.393 .156 2.561

Source: House

for Yes’

olds survey

*significant at 0.05
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Table 5: Determinants of farmers’ adoption of crop management strategies (continued...)

Predictor variables Organic fertilizers Irrigation-water | Agro-forestry
harvesting

Sig. Exp(B) Sig. Exp(B) Sig. Exp(B)
Agroecology- highland(T) 000 01% 000
Agroecology -midland(2) .000% 032 386 651 0005 06
Agroecology -lowland(3) 442 550 04% 224 003 35
Age HH head 903 1.002 603 1.01 922 1.00
Family size .000% 4.343 785 98 .035% 131
Educational attainment 949 1.008 498 1.05 116 L1l
Access to weather info(1) 023* 2.887 428 128 777 1.07
Farm size 419 1.362 808 1.05 .033% 1.36
Acoess to water(1) 767 1.246 00% 48.6 0495 253
Tropical livestock unit (TLU)

.000% 1.780 641 1.03 24 1.06
Farm income 864 1.000 552 1.00 .006* 1.00
Nonfarm income 889 1.000 621 1.00 978 1.00
Farmer-to-farmer extension(1)

.080 2271 929 971 .019% 1.76
Extension service(1) 926 1.047 0% 237 0005 230
Perception to temperature(1)

534 1.595 804 886 337 70
Perception to rainfall(1) 988 1011 009% 2,296 065 2.13
Constant 214 153 056 173 452 57

Source: Households survey, 2019; Note: The reference category is not adopt

Table S presents the logistic regression results, confirming that adaptation decisions are
highly strategy-specific. The number of significant determinants varies across the seven
models, ranging from four for organic fertilizers to seven for practices like agroforestry and
changing planting dates. This variation proves that drivers are not uniform; for example,
while family size significantly boosts the adoption of organic fertilizers and agroforestry
due to labor needs, it remains irrelevant for improved seeds or shifting planting dates.
These findings validate the use of separate binary models to capture precisely the unique
decision-making processes behind each non-mutually exclusive adaptation choice.
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3.3.1. Factors Influencing the Adoption of Improved Seeds

The model for improved seeds successfully identified six statistically significant
determinants (p<0.05): agro-ecology, age of the household head, access to climate
information, farm size, farm income, and farmer-to-farmer extension (Table 5).

The positive relationship between farm size (Exp(B)=1.895) and farm income (Exp(B)=1.000
- significant at p=0.022) and the adoption of improved seeds is well-documented. Larger
farms and higher incomes provide the necessary capital and capacity to absorb the
financial risks associated with purchasing new seed varieties and complementary inputs
like fertilizers (Feige and Marr, 2012; Yesuf et al., 2008). Similarly, access to farmer-
to-farmer extension Exp(B)=2.464) is a powerful positive driver, facilitating peer-to-peer
learning which builds trust and is often more effective than formal approaches (Yohannes
etal., 2020).

The study found that households in midland (Exp(B)=0.543) and lowland (Exp(B)=0.023)
agroecological zones are less likely to adopt improved seeds compared to those in highland
zones. This result strongly supports the idea that biophysical conditions significantly
influence technology viability (Yesuf et al., 2008; Ayele et al., 2024), as distinct rainfall,
temperature, and soil characteristics make certain improved seed varieties less suitable
or profitable in lower altitudes.

Age of the household head shows a statistically significant negative relationship
(Exp(B)=0.964), indicating that younger farmers are more likely to implement these
strategies compared to their older counterparts. This is attributed to younger farmers’
greater exposure to modern farming techniques, longer planning horizons, and higher
willingness to accept risk (Yohannes et al., 2020; Ayele et al., 2024).

Although the study found that a farmer’s perception of climate change was not a
statistically strong predictor of improved seed use in this specific model, access to weather
information (Exp(B)=1.826) was found to be a significant positive determinant. This aligns
with research that emphasizes the importance of climate information services in driving
the adoption of climate-smart agricultural practices (Gbetibouo, 2009; Yohannes et al.,

2020).

3.3.2. Factors Influencing the Use of Organic Fertilizers (manure-compost)

Agroecology shows a significant difference in adoption likelihood. Households in the
midland (Exp(B)=0.032) and lowland (Exp(B)=0.550) agro-ecological zones were less likely
to adopt organic fertilizers compared to the highland zones. This divergence is justified by
the key informants and FGD participants mostly attributed to the use of animal dung as
a primary source of fuel in lower altitudes, diverting this resource from agricultural use.

This challenges the assumption that all degraded areas would see high fertilizer use. In
contrast to the strategy-specific insignificance for improved seeds, family size is a crucial
determinant, showing that an increase of one person in the family increases the odds
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of adopting organic fertilizers by a substantial factor of 4.343 (p<0.001). This highlights
the labor-intensive nature of composting and manure application, which requires a large
available labor force.

Households with access to weather information were 2.887 times more likely to adopt
this crop management practice, as they understand that organic fertilizers can help crops
withstand expected drought conditions. Similarly, livestock ownership (TLU) is a strong
positive determinant, increasing the odds of adoption by a factor of 1.780, reflecting the
fact that livestock is the primary source of manure for soil fertility management.

3.3.3. Factors Influencing the Crop Diversification

The model for crop diversification identified seven statistically significant factors (p<0.05):
agroecology, age of the household head, access to weather information, farm size, farm
income, farmer-to-farmer extension, and formal extension services (Table 5).

The model’s results indicate a strong geographical influence, with households in the
lowland agroecology found to be 1.598 times more likely to diversify than those of in
the highland, while midland households were 0.453 times less likely. This aligns with
the argument that farmers in vulnerable, dry land areas are more likely to adopt risk-
mitigating strategies (Yohannes et al., 2020) due to heightened exposure to climatic
shocks.

The positive relationship between farm size (Exp(B)=1.905) and crop diversification is well-
established, as larger farms provide more land and capital opportunities for diversification
(Yohannes et al., 2020). Access to weather information (Exp(B)=1.570) and farmer-to-
farmer extension (Exp(B)=1.675) are consistently identified as key positive drivers.

In contrast, government extension services showed a statistically significant negative
relationship (Exp(B)=0.562). This is a critical finding, suggesting that the formal extension
approach in the study area may be counterproductive for promoting diversification,
reinforcing the preference for trusted peer networks. The negative correlation with age
(Exp(B)=0.980) is consistent with literature, showing younger farmers are more willing to

experiment with new crops.

3.3.4. Factors Influencing Changing Planting Dates

The model for changing planting dates identified seven statistically significant determinants
(p<0.05): elevation, gender, education, access to weather information, farm size, livestock

ownership (TLU), and livestock ownership (Table 5). This unique set of variables further
confirms that the decision process for this timing-based strategy is distinct from input-
based or diversification practices.

The findings show that lowland (Exp(B)=0.071) and midland (Exp(B)=0.085) households
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were found to be significantly less likely to change planting dates than highland households.
This negative relationship with lower elevation is supported by studies showing that the
effective window for planting is often narrower in drier lowland areas, making the act of
changing the date a riskier practice (Kassie et al., 2009).

The influence of farm size (Exp(B)=1.655) and livestock ownership(Exp(B)=1.557) is logical
and widely accepted. These assets provide the necessary means to prepare land and plant
crops quickly, allowing farmers to take advantage of short, unpredictable rainfall events.
Furthermore, male-headed households were 2.264 times more likely to change planting
dates than female-headed households, consistent with the literature noting that male
farmers are often more involved in climate-sensitive field operations and have better
access to information and heavy-duty resources.

Crucially, access to weather information showed a significant negative relationship
(Exp(B)=0.438) with changing planting dates, which contradicts conventional expectations.
This critical discrepancy suggests a fundamental failure in the delivery or trustworthiness
of climate information in the specific study area. Farmers may receive information that is
too generic, delayed, or inconsistent, leading them to disregard it and adhere to traditional
signs, thereby reducing the likelihood of a planned change in planting. The negative
relationship with education (Exp(B)=0.853) and livestock ownership (TLU) (Exp(B)=0.842)
also points to older, perhaps more traditional, educated farmers being less reactive to
climate signals and market fluctuations regarding planting windows.

3.3.5. Factors Influencing Replanting Crops

The model for replanting identified seven statistically significant factors (p<0.05):
agroecology, age, gender, land fertility, livestock ownership (TLU), farm income, and
farmer-to-farmer extension (Table 5).

Again, lower agroecology significantly inhibits adoption: midland (Exp(B)=0.109) and
lowland (Exp(B)=0.454) households were significantly less likely to replant compared to
the highlands. Replanting in moisture-stressed lowlands is a high-risk activity with low
probability of success, directly discouraging its use (Tilahun and Simane, 2017).

Age shows a negative influence (Exp(B)=0.980), consistent with the risk-aversion of older
farmers. Conversely, male-headed households were 1.85 times more likely to replant,
reflecting greater access to labor and resources needed for this demanding activity.

The inverse relationship between livestock ownership (TLU) (Exp(B)=0.868) and replanting
is a specific adaptive strategy unique to this high-risk decision. Farmers often view their
livestock as a liquid form of climate-shock insurance. Instead of investing additional
resources in a risky second planting, they may opt to sell animals to cope with the financial
loss (Temesgen et al., 2009), shifting toward a livestock-based coping mechanism rather
than crop recovery. In contrast, land fertility (Exp(B)=1.791) provides a strong incentive
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for replanting, as the probability of a successful second harvest is higher on healthier

land.

3.3.6. Factors Influencing Irrigation and Water Harvesting

The model for Irrigation/Water Harvesting identified six statistically significant
determinants (p<0.05): agroecology, access to water, formal extension services, perception
of rainfall changes, perception of temperature changes, and access to water for irrigation
(Table 5).

Access to water was found to be the single most significant determinant across all
adaptation strategies in the study, increasing the probability of adopting irrigation by
a massive factor of 48.649 (p<0.001). This self-explanatory necessity underscores the
fundamental biophysical constraint.

Lowland households were 2.24 times more likely to adopt this strategy than highlands,
justified by the necessity of water harvesting in areas characterized by frequent droughts
and severe water shortages (Temesgen et al., 2009). The positive influence of formal
government extension services (Exp(B)=2.37) on this strategy is a key counterpoint to
the negative relationship observed in diversification, suggesting that complex, capital-
intensive practices like irrigation require the structured technical support and training
that formal services can provide (Yohannes et al., 2021).

Furthermore, a farmer’s perception of climate change (rainfall) was found to be highly
significant (Exp(B)=2.296). This highlights that when the threat of water scarcity is
observed and internalized, it serves as a powerful psychological motivator to invest in
expensive and labor-intensive water management technologies. The absence of other
socio-economic factors like family size or farm income as significant drivers confirms that
water availability and knowledge transfer are the primary bottlenecks for this specific

practice.

3.3.7. Factors Influencing Agroforestry

The model on the adoption of agroforestry identified seven statistically significant
determinants (p<0.05): agroecology, family size, farm size, access to water, farm income,
farmer-to-farmer extension, and formal extension services (Table 5).

As with many other strategies, agroecology is critical: midland (Exp(B)=0.06) and
lowland (Exp(B)=0.35) agro-ecological zones were less likely to practice agroforestry
than the highlands. This confirms the critical requirement for reliable rainfall and cooler
temperatures necessary for tree survival and long-term establishment (Tamene and
Adimassu, 2019).

The positive influence of family size (Exp(B)=1.31) and farm size (Exp(B)=1.36) is consistent
with the labor and land demands of this practice. Larger families provide the necessary
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labor force, and larger farms provide the space for the long-term allocation of land to
tree crops (Temesgen et al., 2009). Both farm income (Exp(B)=1.00) and access to water
(Exp(B)=2.53) also positively influence adoption, reflecting the upfront cost and necessary
moisture for seedling establishment.

Finally, both farmer-to-farmer extension (Exp(B)=1.76) and formal expert services
(Exp(B)=2.30) were significant positive determinants. This shows that agroforestry, being
both technically complex and reliant on peer experience, benefits from a hybrid extension
model, where both official training and trusted peer-to-peer demonstration are essential

for successful uptake.

4. Conclusions and Policy Implications

This study concludes that climate change adaptation is a complex, heterogeneous
process driven by a strategy-specific mix of biophysical, socio-economic, and institutional
determinants. The analysis confirms that anticipatory adaptation is essential for reducing
vulnerability, particularly in the environmentally fragile lowland and midland zones.
Because determinants vary by strategy, such as credit driving seed adoption while
weather information influences planting dates, the use of independent binary models is
fully justified.

Despite this variability, agroecology and farmer-to-farmer extension emerged as the most
consistent drivers of adaptation. These findings suggest that a one-size-fits-all approach
is ineffective; instead, interventions must be tailored to local biophysical constraints
and leverage peer-to-peer learning networks. Furthermore, the mixed impact of formal
government services highlights a need to move away from rigid, top-down systems toward
more participatory, bottom-up models.

To enhance regional resilience, policy must shift toward targeted interventions that
formally support indigenous knowledge-sharing, reform extension services, and address
structural barriers. Key priorities include improving localized weather forecasting,
expanding credit access, and promoting sustainable land management to unlock the full
adaptive potential of farming households across diverse landscapes.
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